Populações Estelares


baade
Walter Baade

Walter Baade [Wilhelm Heinrich Baade (1893-1960)], contemporâneo de Edwin Hubble no observatório de Mount Wilson, estudando a galáxia Andrômeda, notou que podia distinguir claramente as estrelas azuis nos braços espirais da galáxia, e propôs o termo População I para estas estrelas dos braços, e População II para as estrelas vermelhas visíveis no núcleo da galáxia. Atualmente, utilizamos essa nomenclatura mesmo para estrelas da nossa Galáxia e sabemos que as estrelas de População I são estrelas jovens, como o Sol, com menos de 7 bilhões de anos, ricas em metais, isto é, com conteúdo metálico (qualquer elemento acima do He) de cerca de 2%, enquanto que a População II corresponde a estrelas velhas, com cerca de 10 bilhões de anos, e pobres em metais, isto é, com menos de 1% em metais.

Sumário das propriedades das populações estelares

Propriedade População I População II
Localização disco e braços espirais bojo e halo
Movimento confinado ao plano se afastando do plano
órbitas quase circulares órbitas excêntricas
Idade < 7 ×109 anos > 7 ×109 anos
Abundância de elementos pesados 1 – 2 % 0,1 – 0,01%
Cor azul vermelha
Exemplos estrelas O,B estrelas RR Lyrae
aglomerados abertos aglomerados globulares
regiões HII nebulosas planetárias

Estrelas de população III são, por definição, as primeiras estrelas formadas na galáxia. Nos modelos homogêneos de Universo, a nucleosíntese do Big Bang só formou 10-13 a 10-16 de carbono, lítio e berílio, além do hidrogênio, deutério e hélio. Portanto as estrelas de população III deveriam ter [Fe/H]<-10, onde a nomenclatura [X]= logX – logXSol. As estrelas de menor metalicidade conhecidas na nossa Galáxia são a gigante do halo HE 0107-5240, com [Fe/H]=-5,3±0,2 e massa 0,8 MSol, a gigante CD-38:245, com [Fe/H]=-4,0 e algumas estrelas de seqüência principal, como a G64-12, com [Fe/H]=-3,5 (Norbert Christlieb, Michael S. Bessell, Timothy C. Beers, Bengt Gustafsson, Andreas J. Korn, Paul S. Barklem, Torgny Karlsson, Michelle Mizuno-Wiedner & Silvia Rossi, 2002, Nature, 419, 904)

he0107

Nota: Existem modelos assimétricos de Big Bang, com flutuações de densidade, que formam quantidades pequenas até de ferro, mas estes modelos prevêm que nestas regiões de maior densidade a quantidade de hélio, por massa, deveria ser de 36%, enquanto só medimos quantidades próximas de 25%, como previsto nos modelos homogêneos.

FONTE: Universidade Federal do Rio Grande do Sul – UFRGS

Créditos: Kepler de Souza Oliveira Filho / Maria de Fátima Oliveira Saraiva

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s