Lei de Hubble


Deslocamento Espectral para o Vermelho

redshift

slipherEm 1912 Vesto Melvin Slipher (1875-1969) descobriu que as linhas espectrais das estrelas na galáxia de Andrômeda (M31) mostravam um enorme deslocamento para o azul, indicando que esta galáxia está se aproximando do Sol, a uma velocidade de 300 km/s. Slipher iniciou então um trabalho sistemático que levou duas décadas, demonstrando que das 41 galáxias que ele estudou, a maioria apresentava deslocamento espectral para o vermelho, indicando que as galáxias estavam se afastando de nós. Slipher descobriu que quanto mais fraca a galáxia e, portanto mais distante, maior era o deslocamento para o vermelho de seu espectro (redshifht).

O Universo em Grande Escala

Hubble
Edwin Powell Hubble

Em 1923, Edwin Powell Hubble (1889-1953), usando o recém instalado telescópio de 2,5 m de diâmetro do Monte Wilson, na Califórnia, conseguiu identificar as estrelas individuais na galáxia de Andrômeda, medindo sua distância (mais de 2 milhões de anos-luz), demonstrou conclusivamente que nossa galáxia, com 100 mil anos-luz de extensão, não é a única no Universo (1926, Extra-galactic nebulae. Astrophysical Journal, 64, 321)

Humason e Hubble
Humason e Hubble

Em 1929 Hubble ( A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168), medindo o deslocamento para o vermelho nas linhas espectrais das galáxias observadas por Milton La Salle Humason (1891-1972), e medindo ele próprio suas distâncias, descobre que as galáxias estavam se afastando de nós com velocidades proporcionais à sua distância, isto é, quanto mais distante a galáxia, maior sua velocidade de afastamento. Hubble publicou seus resultados para 24 galáxias em 1929, no Proceedings of the National Academy of Science, e dois anos mais tarde, junto com Humason, estendeu seus resultados por um fator de 18 em distância.

Georges-Henri Édouard Lemaître (1894-1966), em seu artigo de 1927, Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. publicado no Annales de la Société scientifique de Bruxelles, Sèrie A, 47, 49 já tinha chegado à mesma conclusão.

A relação entre distância e velocidade constituiu a primeira evidência para a expansão do Universo, já predita pelo russo Alexander Friedmann (1888-1925) em dois artigos publicados no Zeitschrift für Physik em 1922 e 1924, e pelo belga Georges-Henri Édouard Lemaître (1894-1966) em 1927, no Annales de la Société Scientifique de Bruxelles.

Seja $ z\equiv\frac{\Delta \lambda}{\lambda}$ o deslocamento para o vermelho das linhas espectrais (redshift):

hublaw
balloons bolo
A expansão não indica que estamos no centro do Universo. Em um bolo com passas em expansão, todas as passas se afastam umas das outras.

Modelo do bolo de passas:

Num tempo ti=0, as distâncias das passas em relação a uma passa de referência são:

  • passa A: di= 1 cm
  • passa B: di= 3 cm
  • passa C: di= 4 cm

Após 1 hora, o bolo dobra de tamanho, e as distâncias entre as passas serão:

  • passa A: df= 2 cm
  • passa B: df= 6 cm
  • passa C: df= 8 cm

Portanto as velocidades são:

  • passa A: v=1 cm/h
  • passa B: v=3 cm/h
  • passa C: v=4 cm/h

Se nesse momento fizermos um gráfico da velocidade de afastamento das outras passas em funçáo de suas distâncias, acharemos uma reta com uma declividade constante igual a

C = (1cm/h)/2cm = (3cm/h)/6cm = (4cm/h)/8cm = 0,5/h

que é a “constante de afastamento” das passas. Qual o significado dessa constante? Podemos pensar o seguinte: Se a passa A, se movendo a uma velocidade de 1cm/h, está a uma distância de 2cm, há quanto tempo atrás ela estava a uma distância de 0 cm?

O tempo para se mover de 0 até a distância atual é dado por: t = d/v = 2cm/1cm/h = 2h

Certamente podemos fazer o mesmo cálculo para a passa B e para a passa C e chegaremos ao mesmo tempo. Note que fizemos esse cálculo assumindo que elas se moveram com velocidade constante (o que não é necessariamente verdade!)

O tempo para se mover de 0 até a distância atual é exatamente igual ao inverso da constante C:

t = 1/C = 1h/0,5

Note que em geral precisamos utilizar o efeito Doppler relativístico para estimar a velocidade a partir do deslocamento das linhas espectrais das galáxias, $ z\equiv\frac{\Delta \lambda}{\lambda}$:

imgq5

FONTE: Universidade Federal do Rio Grande do Sul – UFRGS

Créditos: Kepler de Souza Oliveira Filho / Maria de Fátima Oliveira Saraiva

© Os textos, gráficos e imagens desta página têm registro: ISBN 85-7025-540-3 (2000), ISBN 85-904457-1-2 (2004), ISBN 978-85-7861-187-3 (2013), e só podem ser copiados integralmente, incluindo o nome dos autores em cada página. Nenhum uso comercial deste material é permitido, sujeito às penalidades previstas em lei.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s