Bolhas gigantes na superfície de estrela gigante vermelha


Com o auxílio do Very Large Telescope do ESO, astrônomos observaram diretamente pela primeira vez padrões de granulação na superfície de uma estrela fora do Sistema Solar — a gigante vermelha π1 Gruis. Esta nova imagem obtida com o instrumento PIONIER revela as células convectivas que constituem a superfície desta enorme estrela — com um diâmetro 350 vezes maior que o do Sol. Cada célula cobre mais de um quarto do diâmetro da estrela e tem cerca de 120 milhões de km de comprimento. Estes novos resultados foram publicados esta semana na revista Nature.

Situada a 530 anos-luz de distância da Terra na constelação do Grouπ1 Gruis é uma estrela gigante vermelha fria. Possui cerca da mesma massa do Sol, mas é 350 vezes maior e várias milhares de vezes mais brilhante [1]. O nosso Sol irá também aumentar de tamanho, tornando-se uma gigante vermelha semelhante a esta, daqui a cerca de 5 bilhões de anos.

Uma equipe internacional de astrônomos liderada por Claudia Paladini (ESO) usou o instrumento PIONIER montado no Very Large Telescope do ESO para observar π1 Gruis com o maior detalhe conseguido até agora. A equipe descobriu que a superfície desta gigante vermelha tem apenas algumas células convectivas, ou grânulos, cada um com cerca de 120 milhões de km de dimensão — cerca de um quarto do diâmetro da estrela [2]. Para comparação, apenas um destes grânulos estenderia-se desde o Sol até depois da órbita de Vênus. As superfícies — chamadas fotosferas — de muitas estrelas gigantes encontram-se obscurecidas por poeira, o que dificulta as observações. No entanto, no caso da π1 Gruis, e apesar de haver poeira longe da estrela, este efeito não é significativo nas novas observações infravermelhas [3].

Quando π1 Gruis gastou todo o hidrogênio que tinha para queimar, há muito tempo atrás, esta estrela anciã terminou a primeira fase da sua fusão nuclear. A estrela diminuiu de tamanho quando ficou sem energia, o que fez com que aquecesse a uma temperatura de mais de 100 milhões de graus. Estas temperaturas extremas deram origem à próxima fase da estrela, que começou então a queimar hélio, transformando-o em átomos mais pesados como o carbono e o oxigênio. O núcleo intensamente quente expeliu as camadas mais externas da estrela, fazendo com que esta aumentasse o seu tamanho em centenas de vezes relativamente ao tamanho original. A estrela que vemos hoje é uma gigante vermelha variável. Até agora, a superfície de uma destas estrelas nunca tinha sido observada com tanto detalhe.

Em termos de comparação, a fotosfera do Sol contém cerca de 2 milhões de células convectivas, com diâmetros típicos de apenas 2000 km. A enorme diferença nas células convectivas destas duas estrelas pode ser explicada em parte pelas suas gravidades de superfície variáveis. π1 Gruis tem apenas 1,5 vezes a massa do Sol mas é muito maior, o que resulta numa gravidade de superfície muito menor e em apenas alguns grânulos extremamente grandes.

Enquanto estrelas com massas maiores que 8 massas solares terminam as suas vidas em explosões de supernova, as estrelas com menos massa, como esta, expelem gradualmente as suas camadas exteriores, dando origem a bonitas nebulosas planetárias. Estudos anteriores de π1 Gruis tinham revelado uma concha de material a 0,9 anos-luz de distância da estrela central, que se pensa ter sido ejetada há cerca de 20 000 anos atrás. Este período relativamente curto da vida de uma estrela dura apenas algumas dezenas de milhares de anos — comparado com a vida total de cerca de vários bilhões — e por isso estas observações mostram um novo método para investigar esta fase efêmera das gigantes vermelhas.


Notas

[1] O nome π1 Gruis vem do sistema de designação Bayer. Em 1603 o astrônomo alemão Johann Bayer classificou 1564 estrelas, dando-lhes nomes compostos por uma letra grega seguida do nome da constelação onde se encontravam. De modo geral, dava-se às estrelas nomes com letras gregas relativas ao seu brilho aparente quando vistas a partir da Terra, sendo que a mais brilhante era designada por Alfa (α). A estrela mais brilhante da constelação do Grou é por isso designada Alfa Gruis.

π Gruis corresponde, na realidade, a um par de estrelas de cores contrastantes que nos aparecem próximas no céu, a segunda naturalmente com o nome de π2 Gruis. São estrelas suficientemente brilhantes para poderem ser observadas com um par de binóculos. Nos anos 1830 Thomas Brisbane notou que π1 Gruis era ela própria um sistema binário de estrelas situado muito mais próximo de nós. Annie Jump Cannon, a quem se atribui a criação do Sistema de Classificação Espectral de Harvard, foi a primeira a descobrir, em 1895, o espectro peculiar de π1 Gruis.

[2] Os grânulos são padrões de correntes de convecção no plasma de uma estrela. À medida que o plasma aquece no centro da estrela, expande-se e sobe até à superfície, esfriando depois nas fronteiras mais exteriores e tornando-se mais escuro e denso, descendo por isso de volta ao centro. Este processo continua durante bilhões de anos, desempenhando um papel principal em muitos processos astrofísicos, incluindo transporte de energia, pulsação, ventos estelares e nuvens de poeira em anãs marrons.

[3] π1 Gruis é um dos membros mais brilhantes da rara classe S de estrelas, a qual foi inicialmente definida pelo astrônomo americano Paul W. Merrill para agrupar estrelas com espectros similarmente incomuns. As estrelas π1 Gruis, R Andromedae e R Cygni tornaram-se os protótipos deste tipo. Os seus espectros peculiares são agora conhecidos como sendo o resultado do “processo-s” ou “processo de captura lenta de nêutrons” — responsável pela criação de metade dos elementos mais pesados que o ferro.


Mais Informações

Este trabalho foi descrito no artigo científico intitulado “Large granulation cells on the surface of the giant star π1 Gruis”, de C. Paladini et al., publicado na revista Nature a 21 de Dezembro de 2017.

A equipe é composta por C. Paladini (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica; ESO, Santiago, Chile), F. Baron (Georgia State University, Atlanta, Georgia, EUA), A. Jorissen (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), J.-B. Le Bouquin (Université Grenoble Alpes, CNRS, IPAG, Grenoble, França), B. Freytag (Universidade Uppsala, Uppsala, Suécia), S. Van Eck (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), M. Wittkowski (ESO, Garching, Alemanha), J. Hron (Universidade de Viena, Viena, Áustria), A. Chiavassa (Laboratoire Lagrange, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Nice, França), J.-P. Berger (Université Grenoble Alpes, CNRS, IPAG, Grenoble, França), C. Siopis (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), A. Mayer (Universidade de Viena, Viena, Áustria), G. Sadowski (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), K. Kravchenko (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), S. Shetye (Institut d’Astronomie et d’Astrophysique, Université libre de Bruxelles, Bruxelas, Bélgica), F. Kerschbaum (Universidade de Viena, Viena, Áustria), J. Kluska (University of Exeter, Exeter, RU) e S. Ramstedt (Universidade Uppsala, Uppsala, Suécia).

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronômico mais produtivo do mundo. O ESO é financiado por 16 países: Alemanha, Áustria, Bélgica, Brasil, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polônia, Portugal, Reino Unido, República Checa, Suécia e Suíça, assim como pelo Chile, o país de acolhimento, e pela Austrália, como parceiro estratégico. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronômica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope, o observatório astronômico óptico mais avançado do mundo e dois telescópios de rastreio. O VISTA, o maior telescópio de rastreio do mundo que trabalha no infravermelho e o VLT Survey Telescope, o maior telescópio concebido exclusivamente para mapear os céus no visível. O ESO é um parceiro principal no ALMA, o maior projeto astronômico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.


Links


FONTE: European Southern Observatory

Publicado por: Henrique Lima

30 anos, ateu, profissional em Tecnologia da Informação e formado em Tecnologia em Informática para Negócios pela FATEC; amante de Astronomia, Rock n' Roll e Motos. Astrônomo Amador, Fundador e Administrador do site Brazil Atronomy. Desenvolvedor dos aplicativos ELIS - Astonomia e Reunião Anual da SAB. Funcionário autônomo da Sociedade Astronômica Brasileira - SAB. Candidato convidado ao programa "Mestrado Profissional em Ensino de Astronomia (2018)" pela Universidade de São Paulo - USP e "Computação Aplicada (2018)" voltada à "Engenharia de Software para Astronomia" pelo Instituto Nacional de Pesquisas Espaciais - INPE.

Categorias NotíciasTags, , , Deixe um comentário

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s